Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood.

نویسندگان

  • Toshihiko Masui
  • Galvin H Swift
  • Michael A Hale
  • David M Meredith
  • Jane E Johnson
  • Raymond J Macdonald
چکیده

The basic helix-loop-helix (bHLH) transcription factor PTF1a is critical to the development of the embryonic pancreas. It is required early for the formation of the undifferentiated tubular epithelium of the nascent pancreatic rudiment and then becomes restricted to the differentiating acinar cells, where it directs the transcriptional activation of the secretory digestive enzyme genes. Here we report that the complex temporal and spatial expression of Ptf1a is controlled by at least three separable gene-flanking regions. A 14.8-kb control domain immediately downstream of the last Ptf1a exon is highly conserved among mammals and directs expression in the dorsal part of the spinal cord but has very little activity in the embryonic or neonatal pancreas. A 13.4-kb proximal promoter domain initiates limited expression in cells that begin the acinar differentiation program. The activity of the proximal promoter domain is complemented by an adjacent 2.3-kb autoregulatory enhancer that is able to activate a heterologous minimal promoter with high-level penetrance in the pancreases of transgenic mice. During embryonic development, the enhancer initiates expression in the early precursor epithelium and then superinduces expression in acinar cells at the onset of their development. The enhancer contains two evolutionarily conserved binding sites for the active form of PTF1a, a trimeric complex composed of PTF1a, one of the common bHLH E proteins, and either RBPJ or RBPJL. The two sites are essential for acinar cell-specific transcription in transfected cell lines and mice. In mature acinar cells, the enhancer and PTF1a establish an autoregulatory loop that reinforces and maintains Ptf1a expression. Indeed, the trimeric PTF1 complex forms dual autoregulatory loops with the Ptf1a and Rbpjl genes that may maintain the stable phenotype of pancreatic acinar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Ptf1a Activity Induces Acinar-to-Endocrine Conversion

Pluripotent embryonic cells become progressively lineage restricted during development in a process that culminates in the differentiation of stable organ-specific cell types that perform specialized functions. Terminally differentiated pancreatic acinar cells do not have the innate capacity to contribute to the endocrine β cell lineage, which is destroyed in individuals with autoimmune diabete...

متن کامل

Microarray analysis of Xenopus endoderm expressing Ptf1a.

Pancreas-specific transcription factor 1a (Ptf1a), a bHLH transcription factor, has two temporally distinct functions during pancreas development; initially it is required for early specification of the entire pancreas, while later it is required for proper differentiation and maintenance of only acinar cells. The importance of Ptf1a function was revealed by the fact that loss of Ptf1a leads to...

متن کامل

Analysis of gene expression on ngn3 gene signaling pathway in endocrine pancreatic cancer

In order to define the undifferentiated transcriptional factors present in neurogenesis of pancreatic β-islet cells, we studied the effect of Pdx1 in embryonic stem cell derived endocrine lineage. There are undifferentiated transcriptional progenitors Pdx1+/Ptf1a+/Cpa1+ tracking the growth of acini, ducts, α and β-islet cells. The upregulated transcriptional factors Pdx1 and ngn3 specify conseq...

متن کامل

Reduction of Ptf1a Gene Dosage Causes Pancreatic Hypoplasia and Diabetes in Mice

OBJECTIVE Most pancreatic endocrine cells derive from Ptf1a-expressing progenitor cells. In humans, nonsense mutations in Ptf1a have recently been identified as a cause of permanent neonatal diabetes associated with pancreatic agenesis. The death of Ptf1a-null mice soon after birth has not allowed further insight into the pathogenesis of the disease; it is therefore unclear how much pancreatic ...

متن کامل

Mind bomb 1 is required for pancreatic β-cell formation.

During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1(+)Ptf1a(+) multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1(-)Ptf1a(+) acinar progenitors and proximal Nkx6-1(+)Ptf1a(-) duct and β-cell progenitors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 17  شماره 

صفحات  -

تاریخ انتشار 2008